Физические обозначения и единицы измерения. Обозначение: высота, ширина, длина. Ширина - обозначение буквой. Обозначение ширины на чертежах. Производные физические величины

    В математике повсеместно используются символы для упрощения и сокращения текста. Ниже приведён список наиболее часто встречающихся математических обозначений, соответствующие команды в TeXе, объяснения и примеры использования. Кроме указанных… … Википедия

    Список используемых в математике специфических символов можно увидеть в статье Таблица математических символов Математические обозначения («язык математики») сложная графическая система обозначений, служащая для изложения абстрактных… … Википедия

    Список знаковых систем (систем обозначений и т.п.), используемых человеческой цивилизацией, за исключением письменностей, для которых имеется отдельный список. Содержание 1 Критерии включения в список 2 Математика … Википедия

    Поль Адриен Морис Дирак Paul Adrien Maurice Dirac Дата рождения: 8& … Википедия

    Дирак, Поль Адриен Морис Поль Адриен Морис Дирак Paul Adrien Maurice Dirac Дата рождения: 8 августа 1902(… Википедия

    Готфрид Вильгельм Лейбниц Gottfried Wilhelm Leibniz … Википедия

    У этого термина существуют и другие значения, см. Мезон (значения). Мезон (от др. греч. μέσος средний) бозон сильного взаимодействия. В Стандартной модели, мезоны это составные (не элементарные) частицы, состоящие из чётного… … Википедия

    Ядерная физика … Википедия

    Альтернативными теориями гравитации принято называть теории гравитации, существующие как альтернативы общей теории относительности (ОТО) или существенно (количественно или принципиально) модифицирующие ее. К альтернативным теориям гравитации… … Википедия

    Альтернативными теориями гравитации принято называть теории гравитации, существующие как альтернативы общей теории относительности или существенно (количественно или принципиально) модифицирующие ее. К альтернативным теориям гравитации часто… … Википедия

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ
ЕДИНСТВА ИЗМЕРЕНИЙ

ЕДИНИЦЫ ФИЗИЧЕСКИХ ВЕЛИЧИН

ГОСТ 8.417-81

(СТ СЭВ 1052-78)

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ

Москва

РАЗРАБОТАН Государственным комитетом СССР по стандартам ИСПОЛНИТЕЛИ Ю.В. Тарбеев ,д-р техн. наук; К.П. Широков ,д-р техн. наук; П.Н. Селиванов , канд. техн. наук; Н.А. Ерюхина ВНЕСЕН Государственным комитетом СССР по стандартам Член Госстандарта Л.К. Исаев УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 19 марта 1981 г. № 1449

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Государственная система обеспечения единства измерений

ЕДИНИЦЫ ФИЗИЧЕСКИХ ВЕЛИЧИН

State system for ensuring the uniformity of measurements.

Units of physical quantities

ГОСТ

8.417-81

(СТ СЭВ 1052-78 )

Постановлением Государственного комитета СССР по стандартам от 19 марта 1981 г. № 1449 срок введения установлен

с 01.01 1982 г.

Настоящий стандарт устанавливает единицы физических величин (далее - единицы), применяемые в СССР, их наименования, обозначения и правила применения этих единиц Стандарт не распространяется на единицы, применяемые в научных исследованиях и при публикациях их результатов, если в них не рассматривают и не используют результаты измерений конкретных физических величин, а также на единицы величин, оцениваемых по условным шкалам*. * Под условными шкалами понимаются, например, шкалы твердости Роквелла и Виккерса, светочувствительности фотоматериалов. Стандарт соответствует СТ СЭВ 1052-78 в части общих положений, единиц Международной системы, единиц, не входящих в СИ, правил образования десятичных кратных и дольных единиц, а также их наименований и обозначений, правил написания обозначений единиц, правил образования когерентных производных единиц СИ (см. справочное приложение 4).

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Подлежат обязательному применению единицы Международной системы единиц*, а также десятичные кратные и дольные от них (см. разд. 2 настоящего стандарта). * Международная система единиц (международное сокращенное наименование - SI , в русской транскрипции - СИ), принята в 1960 г. XI Генеральной конференцией по мерам и весам (ГКМВ) и уточнена на последующих ГКМВ. 1.2. Допускается применять наравне с единицами по п. 1.1 единицы, не входящие в СИ, в соответствии с пп. 3.1 и 3.2 , их сочетания с единицами СИ, а также некоторые нашедшие широкое применение на практике десятичные кратные и дольные от вышеперечисленных единиц. 1.3. Временно допускается применять наравне с единицами по п. 1.1 единицы, не входящие в СИ, в соответствии с п. 3.3, а также некоторые, получившие распространение на практике кратные и дольные от них, сочетания этих единиц с единицами СИ, десятичными кратными и дольными от них и с единицами по п. 3.1. 1.4. Во вновь разрабатываемой или пересматриваемой документации, а также публикациях значения величин должны выражаться в единицах СИ, десятичных кратных и дольных от них и (или) в единицах, допускаемых к применению в соответствии с п. 1.2. Допускается также в указанной документации применять единицы по п. 3.3, срок изъятия которых будет установлен в соответствии с международными соглашениями. 1.5. Во вновь утверждаемой нормативно-технической документации на средства измерений должна предусматриваться их градуировка в единицах СИ, десятичных кратных и дольных от них или в единицах, допускаемых к применению в соответствии с п. 1.2. 1.6. Вновь разрабатываемая нормативно-техническая документация по методам и средствам поверки должна предусматривать поверку средств измерений, проградуированных во вновь вводимых единицах. 1.7. Единицы СИ, установленные настоящим стандартом, и единицы, допускаемые к применению пп. 3.1 и 3.2, должны применяться в учебных процессах всех учебных заведений, в учебниках и учебных пособиях. 1.8. Пересмотр нормативно-технической, конструкторской, технологической и другой технической документации, в которой применяются единицы, не предусмотренные настоящим стандартом, а также приведение в соответствие с пп. 1.1 и 1.2 настоящего стандарта средств измерений, градуированных в единицах, подлежащих изъятию, осуществляют в соответствии с п. 3.4 настоящего стандарта. 1.9. При договорно-правовых отношениях по сотрудничеству с зарубежными странами, при участии в деятельности международных организаций, а также в поставляемой за границу вместе с экспортной продукцией (включая транспортную и потребительскую тару) технической и другой документации, применяют международные обозначения единиц. В документации на экспортную продукцию, если эта документация не отправляется за границу, допускается применять русские обозначения единиц. (Новая редакция, Изм. № 1). 1.10. В нормативно-технической конструкторской, технологической и другой технической документации на различные виды изделий и продукции, используемые только в СССР, применяют предпочтительно русские обозначения единиц. При этом независимо от того, какие обозначения единиц использованы в документации на средства измерений при указании единиц физических величин на табличках, шкалах и щитках этих средств измерений применяют международные обозначения единиц. (Новая редакция, Изм. № 2). 1.11. В печатных изданиях допускается применять либо международные, либо русские обозначения единиц. Одновременно применение обоих видов обозначений в одном и том же издании не допускается, за исключением публикаций по единицам физических величин.

2. ЕДИНИЦЫ МЕЖДУНАРОДНОЙ СИСТЕМЫ

2.1. Основные единицы СИ приведены в табл. 1.

Таблица 1

Величина

Наименование

Размерность

Наименование

Обозначение

Определение

международное

Длина Метр есть длина пути, проходимого светом в вакууме за интервал времени 1/299792458 S [ XVII ГКМВ (1983 г.), Резолюция 1].
Масса

килограмм

Килограмм есть единица массы, равная массе международного прототипа килограмма [ I ГКМВ (1889 г.) и III ГКМВ (1901 г)]
Время Секунда есть время, равное 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 [ XIII ГКМВ (1967 г.), Резолюция 1]
Сила электрического тока Ампер есть сила равная силе неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 m один от другого, вызвал бы на каждом участке проводника длиной 1 m силу взаимодействия, равную 2 × 10 -7 N [МКМВ (1946 г.), Резолюция 2, одобренная IX ГКМВ (1948 г.)]
Термодинамическая температура Кельвин есть единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды [Х III ГКМВ (1967 г.), Резолюция 4]
Количество вещества Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 kg . При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц [ XIV ГКМВ (1971 г.), Резолюция 3]
Сила света Кандела есть сила, равная силе света в заданном направлении источника, испускающего монохроматическое излучение частотой 540 × 10 12 Hz , энергетическая сила света которого в этом направлении составляет 1/683 W / sr [ XVI ГКМВ (1979 г.), Резолюция 3]
Примечания: 1. Кроме температуры Кельвина (обозначение Т ) допускается применять также температуру Цельсия (обозначение t ), определяемую выражением t = T - Т 0 , где Т 0 = 273,15 К, по определению. Температура Кельвина выражается в Кельвинах, температура Цельсия - в градусах Цельсия (обозначение международное и русское °С). По размеру градус Цельсия равен кельвину. 2. Интервал или разность температур Кельвина выражают в кельвинах. Интервал или разность температур Цельсия допускается выражать как в кельвинах, так и в градусах Цельсия. 3. Обозначение Международной практической температуры в Международной практической температурной шкале 1968 г., если ее необходимо отличить от термодинамической температуры, образуется путем добавления к обозначению термодинамической, температуры индекса «68» (например, Т 68 или t 68). 4. Единство световых измерений обеспечивается в соответствии с ГОСТ 8.023-83.
(Измененная редакция, Изм. № 2, 3). 2.2. Дополнительные единицы СИ приведены в табл. 2.

Таблица 2

Наименование величины

Наименование

Обозначение

Определение

международное

Плоский угол Радиан есть угол между двумя радиусами окружности, длина дуги между которыми равна радиусу
Телесный угол

стерадиан

Стерадиан есть телесный угол с вершиной в центре сферы, вырезающий на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы
(Измененная редакция, Изм. № 3). 2.3. Производные единицы СИ следует образовывать из основных и дополнительных единиц СИ по правилам образования когерентных производных единиц (см. обязательное приложение 1). Производные единицы СИ, имеющие специальные наименования, также могут быть использованы для образования других производных единиц СИ. Производные единицы, имеющие специальные наименования, и примеры других производных единиц приведены в табл. 3 - 5. Примечание. Электрические и магнитные единицы СИ следует образовывать в соответствии с рационализованной формой уравнений электромагнитного поля.

Таблица 3

Примеры производных единиц СИ, наименования которых образованы из наименований основных и дополнительных единиц

Величина

Наименование

Размерность

Наименование

Обозначение

международное

Площадь

квадратный метр

Объем, вместимость

кубический метр

Скорость

метр в секунду

Угловая скорость

радиан в секунду

Ускорение

метр на секунду в квадрате

Угловое ускорение

радиан на секунду в квадрате

Волновое число

метр в минус первой степени

Плотность

килограмм на кубический метр

Удельный объем

кубический метр на килограмм

ампер на квадратный метр

ампер на метр

Молярная концентрация

моль на кубический метр

Поток ионизирующих частиц

секунда в минус первой степени

Плотность потока частиц

секунда в минус первой степени - метр в минус второй степени

Яркость

кандела на квадратный метр

Таблица 4

Производные единицы СИ, имеющие специальные наименования

Величина

Наименование

Размерность

Наименование

Обозначение

Выражение через основные и дополнительные, единицы СИ

международное

Частота
Сила, вес
Давление, механическое напряжение, модуль упругости
Энергия, работа, количество теплоты

m 2 × kg × s -2

Мощность, поток энергии

m 2 × kg × s -3

Электрический заряд (количество электричества)
Электрическое напряжение, электрический потенциал, разность электрических потенциалов, электродвижущая сила

m 2 × kg × s -3 × A -1

Электрическая емкость

L -2 M -1 T 4 I 2

m -2 × kg -1 × s 4 × A 2

m 2 × kg × s -3 × A -2

Электрическая проводимость

L -2 M -1 T 3 I 2

m -2 × kg -1 × s 3 × A 2

Поток магнитной индукции, магнитный поток

m 2 × kg × s -2 × A -1

Плотность магнитного потока, магнитная индукция

kg × s -2 × A -1

Индуктивность, взаимная индуктивность

m 2 × kg × s -2 × A -2

Световой поток
Освещенность

m -2 × cd × sr

Активность нуклида в радиоактивном источнике (активность радионуклида)

беккерель

Поглощенная доза излучения, керма, показатель поглощенной дозы (поглощенная доза ионизирующего излучения)
Эквивалентная доза излучения
(Измененная редакция, Изм. № 3).

Таблица 5

Примеры производных единиц СИ, наименования которых образованы с использованием специальных наименований, приведенных в табл. 4

Величина

Наименование

Размерность

Наименование

Обозначение

Выражение через основные и дополнительные единицы СИ

международное

Момент силы

ньютон-метр

m 2 × kg × s -2

Поверхностное натяжение

Ньютон на метр

Динамическая вязкость

паскаль-секунда

m -1 × kg × s -1

кулон на кубический метр

Электрическое смещение

кулон на квадратный метр

вольт на метр

m × kg × s -3 × A -1

Абсолютная диэлектрическая проницаемость

L -3 M -1 × T 4 I 2

фарад на метр

m -3 × kg -1 × s 4 × A 2

Абсолютная магнитная проницаемость

генри на метр

m × kg × s -2 × A -2

Удельная энергия

джоуль на килограмм

Теплоемкость системы, энтропия системы

джоуль на кельвин

m 2 × kg × s -2 × K -1

Удельная теплоемкость, удельная энтропия

джоуль на килограмм-кельвин

Дж/(кг × К)

m 2 × s -2 × K -1

Поверхностная плотность потока энергии

ватт на квадратный метр

Теплопроводность

ватт на метр-кельвнн

m × kg × s -3 × K -1

джоуль на моль

m 2 × kg × s -2 × mol -1

Молярная энтропия, молярная теплоемкость

L 2 MT -2 q -1 N -1

джоуль на моль-кельвин

Дж/(моль × К)

m 2 × kg × s -2 × K -1 × mol -1

ватт на стерадиан

m 2 × kg × s -3 × sr -1

Экспозиционная доза (рентгеновского и гамма-излучения)

кулон на килограмм

Мощность поглощенной дозы

грэй в секунду

3. ЕДИНИЦЫ, НЕ ВХОДЯЩИЕ В СИ

3.1. Единицы, перечисленные в табл. 6 , допускаются к применению без ограничения срока наравне с единицами СИ. 3.2. Без ограничения срока допускается применять относительные и логарифмические единицы за исключением единицы непер (см. п. 3.3). 3.3. Единицы, приведенные в табл. 7 , временно допускается применять до принятия по ним соответствующих международных решений. 3.4. Единицы, соотношения которых с единицами СИ даны в справочном приложении 2 , изымаются из обращения в сроки, предусмотренные программами мероприятий по переходу на единицы СИ, разработанными в соответствии с РД 50-160-79 . 3.5. В обоснованных случаях в отраслях народного хозяйства допускается применение единиц, не предусмотренных настоящим стандартом, путем введения их в отраслевые стандарты по согласованию с Госстандартом.

Таблица 6

Внесистемные единицы, допускаемые к применению наравне с единицами СИ

Наименование величины

Примечание

Наименование

Обозначение

Соотношение с единицей СИ

международное

Масса

атомная единица массы

1,66057 × 10 -27 × kg (приблизительно)

Время 1

86400 s

Плоский угол

(p /180) rad = 1,745329… × 10 -2 × rad

(p /10800) rad = 2,908882… × 10 -4 rad

(p /648000) rad = 4,848137…10 -6 rad

Объем, вместимость
Длина

астрономическая единица

1,49598 × 10 11 m (приблизительно)

световой год

9,4605 × 10 15 m (приблизительно)

3,0857 × 10 16 m (приблизительно)

Оптическая сила

диоптрия

Площадь
Энергия

электрон-вольт

1,60219 × 10 -19 J (приблизительно)

Полная мощность

вольт-ампер

Реактивная мощность
Механическое напряжение

ньютон на квадратный миллиметр

1 Допускается также применять другие единицы, получившие широкое распространение, например неделя, месяц, год, век, тысячелетие и т.п. 2 Допускается применять наименование «гон» 3 Не рекомендуется применять при точных измерениях. При возможности смещения обозначения l с цифрой 1 допускается обозначение L . Примечание. Единицы времени (минуту, час, сутки), плоского угла (градус, минуту, секунду), астрономическую единицу, световой год, диоптрию и атомную единицу массы не допускается применять с приставками
(Измененная редакция, Изм. № 3).

Таблица 7

Единицы, временно допускаемые к применению

Наименование величины

Примечание

Наименование

Обозначение

Соотношение с единицей СИ

международное

Длина

морская миля

1852 m (точно)

В морской навигации

Ускорение

В гравиметрии

Масса

2 × 10 -4 kg (точно)

Для драгоценных камней и жемчуга

Линейная плотность

10 -6 kg / m (точно)

В текстильной промышленности

Скорость

В морской навигации

Частота вращения

оборот в секунду

оборот в минуту

1/60 s -1 = 0,016(6) s -1

Давление
Натуральный логарифм безразмерного отношения физической величины к одноименной физической величине, принимаемой за исходную

1 Np = 0,8686…В = = 8,686… dB

(Измененная редакция, Изм. № 3).

4. ПРАВИЛА ОБРАЗОВАНИЯ ДЕСЯТИЧНЫХ КРАТНЫХ И ДОЛЬНЫХ ЕДИНИЦ, А ТАКЖЕ ИХ НАИМЕНОВАНИЙ И ОБОЗНАЧЕНИЙ

4.1. Десятичные кратные и дольные единицы, а также их наименования и обозначения следует образовывать с помощью множителей и приставок, приведенных в табл. 8.

Таблица 8

Множители и приставки для образования десятичных кратных и дольных единиц и их наименований

Множитель

Приставка

Обозначение приставки

Множитель

Приставка

Обозначение приставки

международное

международное

4.2. Присоединение к наименованию единицы двух или более приставок подряд не допускается. Например, вместо наименования единицы микромикрофарад следует писать пикофарад. Примечания: 1 В связи с тем, что наименование основной единицы - килограмм содержит приставку «кило», для образования кратных и дольных единиц массы используется дольная единица грамм (0,001 kg , кг), и приставки надо присоединять к слову «грамм», например, миллиграмм (mg , мг) вместо микрокилограмм (m kg , мккг). 2. Дольную единицу массы - «грамм» допускается применять и без присоединения приставки. 4.3. Приставку или ее обозначение следует писать слитно с наименованием единицы, к которой она присоединяется, или соответственно, с ее обозначением. 4.4. Если единица образована как произведение или отношение единиц, приставку следует присоединять к наименованию первой единицы, входящей в произведение или в отношение. Допускается применять приставку во втором множителе произведения или в знаменателе лишь в обоснованных случаях, когда такие единицы широко распространены и переход к единицам, образованным в соответствии с первой частью пункта, связан с большими трудностями, например: тонна-километр (t × km ; т × км), ватт на квадратный сантиметр (W / cm 2 ; Вт/см 2), вольт на сантиметр (V / cm ; В/см), ампер на квадратный миллиметр (A / mm 2 ; А/мм 2). 4.5. Наименования кратных и дольных единиц от единицы, возведенной в степень, следует образовывать путем присоединения приставки к наименованию исходной единицы, например, для образования наименований кратной или дольной единицы от единицы площади - квадратного метра, представляющей собой вторую степень единицы длины - метра, приставку следует присоединять к наименованию этой последней единицы: квадратный километр, квадратный сантиметр и т.д. 4.6. Обозначения кратных и дольных единиц от единицы, возведенной в степень, следует образовывать добавлением соответствующего показателя степени к обозначению кратной или дольной от этой единицы, причем показатель означает возведение в степень кратной или дольной единицы (вместе с приставкой). Примеры: 1. 5 km 2 = 5(10 3 m) 2 = 5 × 10 6 m 2 . 2. 250 cm 3 /s = 250(10 -2 m) 3 /(1 s) = 250 × 10 -6 m 3 /s. 3. 0,002 cm -1 = 0,002(10 -2 m) -1 = 0,002 × 100 m -1 = 0,2 m -1 . 4.7. Рекомендации по выбору десятичных кратных и дольных единиц приведены в справочном приложении 3.

5. ПРАВИЛА НАПИСАНИЯ ОБОЗНАЧЕНИЙ ЕДИНИЦ

5.1. Для написания значений величин следует применять обозначения единиц буквами или специальными знаками (…°,… ¢ ,… ¢ ¢), причем устанавливаются два вида буквенных обозначений: международные (с использованием букв латинского или греческого алфавита) и русские (с использованием букв русского алфавита). Устанавливаемые стандартом обозначения единиц приведены в табл. 1 - 7 . Международные и русские обозначения относительных и логарифмических единиц следующие: процент (%), промилле (о / оо), миллионная доля (рр m , млн -1), бел (В, Б), децибел (dB , дБ), октава (-, окт), декада (-, дек), фон (phon , фон). 5.2. Буквенные обозначения единиц должны печататься прямым шрифтом. В обозначениях единиц точку как знак сокращения не ставят. 5.3. Обозначения единиц следует применять после числовых: значений величин и помещать в строку с ними (без переноса на следующую строку). Между последней цифрой числа и обозначением единицы следует оставлять пробел, равный минимальному расстоянию между словами, которое определено для каждого типа и размера шрифта по ГОСТ 2.304-81. Исключения составляют обозначения в виде знака, поднятого над строкой (п. 5.1), перед которыми пробела не оставляют. (Измененная редакция, Изм. № 3). 5.4. При наличии десятичной дроби в числовом значении величины обозначение единицы следует помещать после всех цифр. 5.5. При указании значений величин с предельными отклонениями следует заключать числовые значения с предельными отклонениями в скобки и обозначения единицы помешать после скобок или проставлять обозначения единиц после числового значения величины и после ее предельного отклонения. 5.6. Допускается применять обозначения единиц в заголовках граф и в наименованиях строк (боковиках) таблиц. Примеры:

Номинальный расход. m 3 / h

Верхний предел показаний, m 3

Цена деления крайнего правого ролика, m 3 , не более

100, 160, 250, 400, 600 и 1000

2500, 4000, 6000 и 10000

Тяговая мощность, kW
Габаритные размеры, mm:
длина
ширина
высота
Колея, mm
Просвет, mm
5.7. Допускается применять обозначения единиц в пояснениях обозначений величин к формулам. Помещение обозначений единиц в одной строке с формулами, выражающими зависимости между величинами или между их числовыми значениями, представленными в буквенной форме, не допускается. 5.8. Буквенные обозначения единиц, входящих в произведение, следует отделять точками на средней линии, как знаками умножения*. * В машинописных текстах допускается точку не поднимать. Допускается буквенные обозначения единиц, входящих в произведение, отделять пробелами, если это не приводит к недоразумению. 5.9. В буквенных обозначениях отношений единиц в качестве знака деления должна применяться только одна черта: косая или горизонтальная. Допускается применять обозначения единиц в виде произведения обозначений единиц, возведенных в степени (положительные и отрицательные)**. ** Если для одной из единиц, входящих в отношение, установлено обозначение в виде отрицательной степени (например s -1 , m -1 , К -1 ; c -1 , м -1 , К -1), применять косую или горизонтальную черту не допускается. 5.10. При применении косой черты обозначения единиц в числителе и знаменателе следует помещать в строку, произведение обозначений единиц в знаменателе следует заключать в скобки. 5.11. При указании производной единицы, состоящей из двух и более единиц, не допускается комбинировать буквенные обозначения и наименования единиц, т.е. для одних единиц приводить обозначения, а для других - наименования. Примечание. Допускается применять сочетания специальных знаков…°,… ¢ ,… ¢ ¢ , % и о / оо с буквенными обозначениями единиц, например…°/ s и т. д.

ПРИЛОЖЕНИЕ 1

Обязательное

ПРАВИЛА ОБРАЗОВАНИЯ КОГЕРЕНТНЫХ ПРОИЗВОДНЫХ ЕДИНИЦ СИ

Когерентные производные единицы (далее - производные единицы) Международной системы, как правило, образуют при помощи простейших уравнений связи между величинами (определяющих уравнений), в которых числовые коэффициенты равны 1. Для образования производных единиц величины в уравнениях связи принимают равными единицам СИ. Пример. Единицу скорости образуют с помощью уравнения, определяющего скорость прямолинейно и равномерно движущейся точки

v = s/t ,

Где v - скорость; s - длина пройденного пути; t - время движения точки. Подстановка вместо s и t их единиц СИ дает

[v ] = [s ]/[t ] = 1 m/s.

Следовательно, единицей скорости СИ является метр в секунду. Он равен скорости прямолинейно и равномерно движущейся точки, при которой эта точка за время 1 s перемещается на расстояние 1 m . Если уравнение связи содержит числовой коэффициент, отличный от 1, то для образования когерентной производной единицы СИ в правую часть подставляют величины со значениями в единицах СИ, дающими после умножения на коэффициент общее числовое значение, равное числу 1. Пример. Если для образования единицы энергии используют уравнение

Где Е - кинетическая энергия; m - масса материальной точки; v - скорость движения точки, то когерентную единицу энергии СИ образуют, например, следующим образом:

Следовательно, единицей энергии СИ является джоуль (равный ньютон-метру). В приведенных примерах он равен кинетической энергии тела массой 2 kg , движущегося со скоростью 1 m / s , или же тела массой 1 kg , движущегося со скоростью

ПРИЛОЖЕНИЕ 2

Справочное

Соотношение некоторых внесистемных единиц с единицами СИ

Наименование величины

Примечание

Наименование

Обозначение

Соотношение с единицей СИ

международное

Длина

ангстрем

икс-единица

1,00206 × 10 -13 m (приблизительно)

Площадь
Масса
Телесный угол

квадратный градус

3,0462... × 10 -4 sr

Сила, вес

килограмм-сила

9,80665 N (точно)

килопонд

грамм-сила

9,83665 × 10 -3 N (точно)

тонна-сила

9806,65 N (точно)

Давление

килограмм-сила на квадратный сантиметр

98066,5 Ра (точно)

килопонд на квадратный сантиметр

миллиметр водяного столба

мм вод. ст.

9,80665 Ра (точно)

миллиметр ртутного столба

мм рт. ст.

Напряжение (механическое)

килограмм-сила на квадратный миллиметр

9,80665 × 10 6 Ра (точно)

килопонд на квадратный миллиметр

9,80665 × 10 6 Ра (точно)

Работа, энергия
Мощность

лошадиная сила

Динамическая вязкость
Кинематическая вязкость

ом-квадратный миллиметр на метр

Ом × мм 2 /м

Магнитный поток

максвелл

Магнитная индукция

гпльберт

(10/4 p) А = 0,795775…А

Напряженность магнитного поля

(10 3 / p) А/ m = 79,5775…А/ m

Количество теплоты, термодинамический потенциал (внутренняя энергия, энтальпия, изохорно-изотермический потенциал), теплота фазового превращения, теплота химической реакции

калория (межд.)

4,1858 J (точно)

калория термохимическая

4,1840 J (приблизительно)

калория 15-градусная

4,1855 J (приблизительно)

Поглощенная доза излучения
Эквивалентная доза излучения, показатель эквивалентной дозы
Экспозиционная доза фотонного излучения (экспозиционная доза гамма- и рентгеновского излучений)

2,58 × 10 -4 C / kg (точно)

Активность нуклида в радиоактивном источнике

3,700 × 10 10 Bq (точно)

Длина
Угол поворота

2 p rad = 6,28… rad

Магнитодвижущая сила, разность магнитных потенциалов

ампервиток

Яркость
Площадь
Измененная редакция, Изм. № 3.

ПРИЛОЖЕНИЕ 3

Справочное

1. Выбор десятичной кратной или дольной единицы от единицы СИ диктуется прежде всего удобством ее применения. Из многообразия кратных и дольных единиц, которые могут быть образованы при помощи приставок, выбирают единицу, приводящую к числовым значениям величины, приемлемым на практике. В принципе кратные и дольные единицы выбирают таким образом, чтобы числовые значения величины находились в диапазоне от 0,1 до 1000. 1.1. В некоторых случаях целесообразно применять одну и ту же кратную или дольную единицу, даже если числовые значения выходят за пределы диапазона от 0,1 до 1000, например, в таблицах числовых значений для одной величины или при сопоставлении этих значений в одном тексте. 1.2. В некоторых областях всегда используют одну и ту же кратную или дольную единицу. Например, в чертежах, применяемых в машиностроении, линейные размеры всегда выражают в миллиметрах. 2. В табл. 1 настоящего приложения приведены рекомендуемые для применения кратные и дольные единицы от единиц СИ. Представленные в табл. 1 кратные и дольные единицы от единиц СИ для данной физической величины не следует считать исчерпывающими, так как они могут не охватывать диапазоны физических величин в развивающихся и вновь возникающих областях науки и техники. Тем не менее, рекомендуемые кратные и дольные единицы от единиц СИ способствуют единообразию представления значений физических величин, относящихся к различным областям техники. В этой же таблице помещены также получившие широкое распространение на практике кратные и дольные единицы от единиц, применяемых наравне с единицами СИ. 3. Для величин, не охваченных табл. 1, следует использовать кратные и дольные единицы, выбранные в соответствии с п. 1 данного приложения. 4. Для снижения вероятности ошибок при расчетах десятичные кратные и дольные единицы рекомендуется подставлять только в конечный результат, а в процессе вычислений все величины выражать в единицах СИ, заменяя приставки степенями числа 10. 5. В табл. 2 настоящего приложения приведены получившие распространение единицы некоторых логарифмических величин.

Таблица 1

Наименование величины

Обозначения

единиц СИ

единиц, не входящих и СИ

кратных и дольных от единиц, не входящих в СИ

Часть I . Пространство и время

Плоский угол

rad ; рад (радиан)

m rad ; мкрад

... ° (градус)... (минута)..." (секунда)

Телесный угол

sr ; cp (стерадиан)

Длина

m ; м (метр)

… ° (градус)

… ¢ (минута)

… ² (секунда)

Площадь
Объем, вместимость

l (L); л (литр)

Время

s ; с (секунда)

d ; сут (сутки)

min ; мин (минута)

Скорость
Ускорение

m / s 2 ; м/с 2

Часть II . Периодические и связанные с ними явления

Hz ; Гц (герц)

Частота вращения

min -1 ; мин -1

Часть III . Механика

Масса

kg ; кг (килограмм)

t ; т (тонна)

Линейная плотность

kg / m ; кг/м

mg / m ; мг/м

или g / km ; г/км

Плотность

kg / m 3 ; кг/м 3

Mg / m 3 ; Мг/м 3

kg / dm 3 ; кг/дм 3

g / cm 3 ; г/см 3

t / m 3 ; т/м 3

или kg / l ; кг/л

g / ml ; г/мл

Количество движения

kg × m / s ; кг × м/с

Момент количества движения

kg × m 2 / s ; кг × м 2 /с

Момент инерции (динамический момент инерции)

kg × m 2 , кг × м 2

Сила, вес

N ; Н (ньютон)

Момент силы

N × m ; Н × м

MN × m ; МН × м

kN × m ; кН × м

mN × m ; мН × м

m N × m ; мкН × м

Давление

Ра; Па (паскаль)

m Ра; мкПа

Напряжение
Динамическая вязкость

Ра × s ; Па × с

mPa × s ; мПа × с

Кинематическая вязкость

m 2 / s ; м 2 /с

mm 2 / s ; мм 2 /с

Поверхностное натяжение

mN / m ; мН/м

Энергия, работа

J ; Дж (джоуль)

(электрон-вольт)

GeV ; ГэВ MeV ; МэВ keV ; кэВ

Мощность

W ; Вт (ватт)

Часть IV . Теплота

Температура

К; К (кельвин)

Температурный коэффициент
Теплота, количество теплоты
Тепловой поток
Теплопроводность
Коэффициент теплопередачи

Вт/(м 2 × К)

Теплоемкость

kJ / K ; кДж/К

Удельная теплоемкость

Дж/(кг × К)

kJ /(kg × К); кДж/(кг × К)

Энтропия

kJ / K ; кДж/К

Удельная энтропия

Дж/(кг × К)

kJ /(kg × K); кДж/(кг × К)

Удельное количество теплоты

J / kg ; Дж/кг

MJ / kg ; МДж/кг kJ / kg ; кДж/кг

Удельная теплота фазового превращения

J / kg ; Дж/кг

MJ / kg ; МДж/кг

kJ / kg ; кДж/кг

Часть V . Электричество и магнетизм

Электрический ток (сила электрического тока)

A; A (ампер)

Электрический заряд (количество электричества)

С; Кл (кулон)

Пространственная плотность электрического заряда

С/ m 3 ; Кл/м 3

C / mm 3 ; Кл/мм 3

МС/ m 3 ; МКл/м 3

С/с m 3 ; Кл/см 3

kC / m 3 ; кКл/м 3

m С/ m 3 ; мКл/м 3

m С/ m 3 ; мкКл/м 3

Поверхностная плотность электрического заряда

С/ m 2 , Кл/м 2

МС/ m 2 ; МКл/м 2

С/ mm 2 ; Кл/мм 2

С/с m 2 ; Кл/см 2

kC / m 2 ; кКл/м 2

m С/ m 2 ; мКл/м 2

m С/ m 2 ; мкКл/м 2

Напряженность электрического поля

MV / m ; МВ/м

kV / m ; кВ/м

V / mm ; В/мм

V / cm ; В/см

mV / m ; мВ/м

m V / m ; мкВ/м

Электрическое напряжение, электрический потенциал, разность электрических потенциалов, электродвижущая сила

V , В (вольт)

Электрическое смещение

С/ m 2 ; Кл/м 2

С/с m 2 ; Кл/см 2

kC / cm 2 ; кКл/см 2

m С/ m 2 ; мКл/м 2

m С/ m 2 , мкКл/м 2

Поток электрического смещения
Электрическая емкость

F , Ф (фарад)

Абсолютная диэлектрическая проницаемость, электрическая постоянная

m F / m , мкФ/м

nF / m , нФ/м

pF / m , пФ/м

Поляризованность

С/ m 2 , Кл/м 2

С/с m 2 , Кл/см 2

kC / m 2 ; кКл/м 2

m С/ m 2 , мКл/м 2

m С/ m 2 ; мкКл/м 2

Электрический момент диполя

С × m , Кл × м

Плотность электрического тока

А/ m 2 , А/м 2

МА/ m 2 , МА/м 2

А/ mm 2 , А/мм 2

A /с m 2 , А/см 2

kA / m 2 , кА/м 2 ,

Линейная плотность электрического тока

kA / m ; кА/м

А/ mm ; А/мм

А/с m ; А/см

Напряженность магнитного поля

kA / m ; кА/м

A / mm ; А/мм

A / cm ; А/см

Магнитодвижущая сила, разность магнитных потенциалов
Магнитная индукция, плотность магнитного потока

Т; Тл (тесла)

Магнитный поток

Wb , Вб (вебер)

Магнитный векторный потенциал

Т × m ; Тл × м

kT × m ; кТл × м

Индуктивность, взаимная индуктивность

Н; Гн (генри)

Абсолютная магнитная проницаемость, магнитная постоянная

m Н/ m ; мкГн/м

nH / m ; нГн/м

Магнитный момент

А × m 2 ; А м 2

Намагниченность

kA / m ; кА/м

А/ mm ; А/мм

Магнитная поляризация
Электрическое сопротивление
Электрическая проводимость

S ; См (сименс)

Удельное электрическое сопротивление

W × m ; Ом × м

G W × m ; ГОм × м

М W × m ; МОм × м

k W × m ; кОм × м

W × cm ; Ом × см

m W × m ; мОм × м

m W × m ; мкОм × м

n W × m ; нОм × м

Удельная электрическая проводимость

MS / m ; МСм/м

kS / m ; кСм/м

Магнитное сопротивление
Магнитная проводимость
Полное сопротивление
Модуль полного сопротивления
Реактивное сопротивление
Активное сопротивление
Полная проводимость
Модуль полной проводимости
Реактивная проводимость
Активная проводимость
Активная мощность
Реактивная мощность
Полная мощность

V × A , В × А

Часть VI . Свет и связанные с ним электромагнитные излучения

Длина волны
Волновое число
Энергия излучения
Поток излучения, мощность излучения
Энергетическая сила света (сила излучения)

W / sr ; Вт/ср

Энергетическая яркость (лучистость)

W /(sr × m 2); Вт/(ср × м 2)

Энергетическая освещенность (облученность)

W / m 2 ; Вт/м 2

Энергетическая светимость (нзлучательность)

W / m 2 ; Вт/м 2

Сила света
Световой поток

lm ; лм (люмен)

Световая энергия

lm × s ; лм × с

lm × h; лм × ч

Яркость

cd / m 2 ; кд/м 2

Светимость

lm / m 2 ; лм/м 2

Освещенность

l х; лк (люкс)

Световая экспозиция

lx × s ; лк × с

Световой эквивалент потока излучения

lm / W ; лм/Вт

Часть VII . Акустика

Период
Частота периодического процесса
Длина волны
Звуковое давление

m Ра; мкПа

Скорость колебания частицы

mm / s ; мм/с

Объемная скорость

m 3 / s ; м 3 /с

Скорость звука
Поток звуковой энергии, звуковая мощность
Интенсивность звука

W / m 2 ; Вт/м 2

mW / m 2 ; мВт/м 2

m W / m 2 ; мкВт/м 2

pW / m 2 ; пВт/м 2

Удельное акустическое сопротивление

Pa × s / m ; Па × с/м

Акустическое сопротивление

Pa × s / m 3 ; Па × с/м 3

Механическое сопротивление

N × s / m ; Н × с/м

Эквивалентная площадь поглощения поверхностью или предметом
Время реверберации

Часть VIII Физическая химия и молекулярная физика

Количество вещества

mol ; моль (моль)

kmol ; кмоль

mmol ; ммоль

m mol ; мкмоль

Молярная масса

kg / mol ; кг/моль

g / mol ; г/моль

Молярный объем

m 3 / moi ; м 3 /моль

dm 3 / mol ; дм 3 /моль cm 3 / mol ; см 3 /моль

l / mol ; л/моль

Молярная внутренняя энергия

J / mol ; Дж/моль

kJ / mol ; кДж/моль

Молярная энтальпия

J / mol ; Дж/моль

kJ / mol ; кДж/моль

Химический потенциал

J / mol ; Дж/моль

kJ / mol ; кДж/моль

Химическое сродство

J / mol ; Дж/моль

kJ / mol ; кДж/моль

Молярная теплоемкость

J /(mol × K); Дж/(моль × К)

Молярная энтропия

J /(mol × K); Дж/(моль × К)

Молярная концентрация

mol / m 3 ; моль/м 3

kmol / m 3 ; кмоль/м 3

mol / dm 3 ; моль/дм 3

mol /1; моль/л

Удельная адсорбция

mol / kg ; моль/кг

mmol / kg ; ммоль/кг

Температуропроводность

M 2 / s ; м 2 /с

Часть IX . Ионизирующие излучения

Поглощенная доза излучения, керма, показатель поглощенной дозы (поглощенная доза ионизирующего излучения)

Gy ; Гр (грэй)

m G у; мкГр

Активность нуклида в радиоактивном источнике (активность радионуклида)

Bq ; Бк (беккерель)

(Измененная редакция, Изм. № 3).

Таблица 2

Наименование логарифмической величины

Обозначение единицы

Исходное значение величины

Уровень звукового давления
Уровень звуковой мощности
Уровень интенсивности звука
Разность уровней мощности
Усиление, ослабление
Коэффициент затухания

ПРИЛОЖЕНИЕ 4

Справочное

ИНФОРМАЦИОННЫЕ ДАННЫЕ О СООТВЕТСТВИИ ГОСТ 8.417-81 СТ СЭВ 1052-78

1. Разделы 1 - 3 (пп. 3.1 и 3.2); 4, 5 и обязательное Приложение 1 к ГОСТ 8.417-81 соответствуют разделам 1 - 5 и приложению к СТ СЭВ 1052-78. 2. Справочное приложение 3 к ГОСТ 8.417-81 соответствует информационному приложению к СТ СЭВ 1052-78.

Изучение физики в школе длится несколько лет. При этом ученики сталкиваются с проблемой, что одни и те же буквы обозначают совершенно разные величины. Чаще всего этот факт касается латинских букв. Как же тогда решать задачи?

Пугаться такого повтора не стоит. Ученые постарались ввести их в обозначение так, чтобы одинаковые буквы не встретились в одной формуле. Чаще всего ученики сталкиваются с латинской n. Она может быть строчной или прописной. Поэтому логично возникает вопрос о том, что такое n в физике, то есть в определенной встретившейся ученику формуле.

Что обозначает прописная буква N в физике?

Чаще всего в школьном курсе она встречается при изучении механики. Ведь там она может быть сразу в дух значениях - мощность и сила нормальной реакции опоры. Естественно, что эти понятия не пересекаются, ведь используются в разных разделах механики и измеряются в разных единицах. Поэтому всегда нужно точно определить, что такое n в физике.

Мощность — это скорость изменения энергии системы. Это скалярная величина, то есть просто число. Единицей ее измерения служит ватт (Вт).

Сила нормальной реакции опоры — сила, которая оказывает действие на тело со стороны опоры или подвеса. Кроме числового значения, она имеет направление, то есть это векторная величина. Причем она всегда перпендикулярна поверхности, на которую производится внешнее воздействие. Единицей измерения этой N является ньютон (Н).

Что такое N в физике, помимо уже указанных величин? Это может быть:

    постоянная Авогадро;

    увеличение оптического прибора;

    концентрация вещества;

    число Дебая;

    полная мощность излучения.

Что может обозначать строчная буква n в физике?

Список наименований, которые могут за ней скрываться, достаточно обширен. Обозначение n в физике используется для таких понятий:

    показатель преломления, причем он может быть абсолютным или относительным;

    нейтрон — нейтральная элементарная частица с массой незначительно большей, чем у протона;

    частота вращения (используется для замены греческой буквы «ню», так как она очень похожа на латинскую «вэ») — число повторения оборотов за единицу времени, измеряется в герцах (Гц).

Что означает n в физике, кроме уже указанных величин? Оказывается, за ней скрываются основное квантовое число (квантовая физика), концентрация и постоянная Лошмидта (молекулярная физика). Кстати, при вычислении концентрации вещества требуется знать величину, которая также записывается латинской «эн». О ней будет идти речь ниже.

Какая физическая величина может быть обозначена n и N?

Ее название происходит от латинского слова numerus, в переводе оно звучит как «число», «количество». Поэтому ответ на вопрос о том, что значит n в физике, достаточно прост. Это количество любых предметов, тел, частиц — всего, о чем идет речь в определенной задаче.

Причем «количество» — одна из немногих физических величин, которые не имеют единицы измерения. Это просто число, без наименования. Например, если в задаче идет речь о 10 частицах, то n будет равно просто 10. Но если получается так, что строчная «эн» уже занята, то использовать приходится прописную букву.

Формулы, в которых фигурирует прописная N

Первая из них определяет мощность, которая равна отношению работы ко времени:

В молекулярной физике имеется такое понятие, как химическое количество вещества. Обозначается греческой буквой «ню». Чтобы его сосчитать, следует разделить количество частиц на число Авогадро :

Кстати, последняя величина тоже обозначается столь популярной буквой N. Только у нее всегда присутствует нижний индекс — А.

Чтобы определить электрический заряд, потребуется формула:

Еще одна формула с N в физике - частота колебаний. Чтобы ее сосчитать, нужно их число разделить на время:

Появляется буква «эн» в формуле для периода обращения:

Формулы, в которых встречается строчная n

В школьном курсе физики эта буква чаще всего ассоциируется с показателем преломления вещества. Поэтому важным оказывается знание формул с ее применением.

Так, для абсолютного показателя преломления формула записывается следующим образом:

Здесь с — скорость света в вакууме, v — его скорость в преломляющей среде.

Формула для относительного показателя преломления несколько сложнее:

n 21 = v 1: v 2 = n 2: n 1 ,

где n 1 и n 2 — абсолютные показатели преломления первой и второй среды, v 1 и v 2 — скорости световой волны в указанных веществах.

Как найти n в физике? В этом нам поможет формула, в которой требуется знать углы падения и преломления луча, то есть n 21 = sin α: sin γ.

Чему равно n в физике, если это показатель преломления?

Обычно в таблицах приводятся значения для абсолютных показателей преломления различных веществ. Не стоит забывать, что эта величина зависит не только от свойств среды, но и от длины волны. Табличные значения показателя преломления даются для оптического диапазона.

Итак, стало ясно, что такое n в физике. Чтобы не осталось каких-либо вопросов, стоит рассмотреть некоторые примеры.

Задача на мощность

№1. Во время пахоты трактор тянет плуг равномерно. При этом он прилагает силу 10 кН. При таком движении в течение 10 минут он преодолевает 1,2 км. Требуется определить развиваемую им мощность.

Перевод единиц в СИ. Начать можно с силы, 10 Н равны 10000 Н. Потом расстояние: 1,2 × 1000 = 1200 м. Осталось время — 10 × 60 = 600 с.

Выбор формул. Как уже было сказано выше, N = А: t. Но в задаче нет значения для работы. Для ее вычисления пригодится еще одна формула: А = F × S. Окончательный вид формулы для мощности выглядит так: N = (F × S) : t.

Решение. Вычислим сначала работу, а потом - мощность. Тогда в первом действии получится 10 000 × 1 200 = 12 000 000 Дж. Второе действие дает 12 000 000: 600 = 20 000 Вт.

Ответ. Мощность трактора равна 20 000 Вт.

Задачи на показатель преломления

№2. Абсолютный показатель преломления у стекла равен 1,5. Скорость распространения света в стекле меньше, чем в вакууме. Требуется определить, во сколько раз.

В СИ переводить данные не требуется.

При выборе формул остановиться нужно на этой: n = с: v.

Решение. Из указанной формулы видно, что v = с: n. Это значит, что скорость распространения света в стекле равна скорости света в вакууме, деленному на показатель преломления. То есть она уменьшается в полтора раза.

Ответ. Скорость распространения света в стекле меньше, чем в вакууме, в 1,5 раза.

№3. Имеются две прозрачные среды. Скорость света в первой из них равна 225 000 км/с, во второй — на 25 000 км/с меньше. Луч света идет из первой среды во вторую. Угол падения α равен 30º. Вычислить значение угла преломления.

Нужно ли переводить в СИ? Скорости даны во внесистемных единицах. Однако при подстановке в формулы они сократятся. Поэтому переводить скорости в м/с не нужно.

Выбор формул, необходимых для решения задачи. Потребуется использовать закон преломления света: n 21 = sin α: sin γ. А также: n = с: v.

Решение. В первой формуле n 21 — это отношение двух показателей преломления рассматриваемых веществ, то есть n 2 и n 1 . Если записать вторую указанную формулу для предложенных сред, то получатся такие: n 1 = с: v 1 и n 2 =с: v 2 . Если составить отношение двух последних выражений, получится, что n 21 = v 1: v 2 . Подставив его в формулу закона преломления, можно вывести такое выражение для синуса угла преломления: sin γ = sin α × (v 2: v 1).

Подставляем в формулу значения указанных скоростей и синуса 30º (равен 0,5), получается, что синус угла преломления равен 0,44. По таблице Брадиса получается, что угол γ равен 26º.

Ответ. Значение угла преломления — 26º.

Задачи на период обращения

№4. Лопасти ветряной мельницы вращаются с периодом, равным 5 секундам. Вычислите число оборотов этих лопастей за 1 час.

Переводить в единицы СИ нужно только время 1 час. Оно будет равно 3 600 секундам.

Подбор формул . Период вращения и число оборотов связаны формулой Т = t: N.

Решение. Из указанной формулы число оборотов определяется отношением времени к периоду. Таким образом, N = 3600: 5 = 720.

Ответ. Число оборотов лопастей мельницы равно 720.

№5. Винт самолета вращается с частотой 25 Гц. Какое время потребуется винту, чтобы совершить 3 000 оборотов?

Все данные приведены с СИ, поэтому переводить ничего не нужно.

Необходимая формула : частота ν = N: t. Из нее необходимо только вывести формулу для неизвестного времени. Оно является делителем, поэтому его полагается находить делением N на ν.

Решение. В результате деления 3 000 на 25 получается число 120. Оно будет измеряться в секундах.

Ответ. Винт самолета совершает 3000 оборотов за 120 с.

Подведем итоги

Когда ученику в задаче по физике встречается формула, содержащая n или N, ему нужно разобраться с двумя моментами. Первый — из какого раздела физики приведено равенство. Это может быть ясно из заголовка в учебнике, справочнике или слов учителя. Потом следует определиться с тем, что скрывается за многоликой «эн». Причем в этом помогает наименование единиц измерения, если, конечно, приведено ее значение. Также допускается еще один вариант: внимательно посмотрите на остальные буквы в формуле. Возможно, они окажутся знакомыми и дадут подсказку в решаемом вопросе.

Построение чертежей - дело непростое, но без него в современном мире никак. Ведь чтобы изготовить даже самый обычный предмет (крошечный болт или гайку, полку для книг, дизайн нового платья и подобное), изначально нужно провести соответствующие вычисления и нарисовать чертеж будущего изделия. Однако часто составляет его один человек, а занимается изготовлением чего-либо по этой схеме другой.

Чтобы не возникло путаницы в понимании изображенного предмета и его параметров, во всем мире приняты условные обозначения длины, ширины, высоты и других величин, применяемых при проектировании. Каковы они? Давайте узнаем.

Величины

Площадь, высота и другие обозначения подобного характера являются не только физическими, но и математическими величинами.

Единое их буквенное обозначение (используемое всеми странами) было уставлено в середине ХХ века Международной системой единиц (СИ) и применяется по сей день. Именно по этой причине все подобные параметры обозначаются латинскими, а не кириллическими буквами или арабской вязью. Чтобы не создавать отдельных трудностей, при разработке стандартов конструкторской документации в большинстве современных стран решено было использовать практически те же условные обозначения, что применяются в физике или геометрии.

Любой выпускник школы помнит, что в зависимости от того, двухмерная или трехмерная фигура (изделие) изображена на чертеже, она обладает набором основных параметров. Если присутствуют два измерения - это ширина и длина, если их три - добавляется еще и высота.

Итак, для начала давайте выясним, как правильно длину, ширину, высоту обозначать на чертежах.

Ширина

Как было сказано выше, в математике рассматриваемая величина является одним из трех пространственных измерений любого объекта, при условии что его замеры производятся в поперечном направлении. Так чем знаменита ширина? Обозначение буквой «В» она имеет. Об этом известно во всём мире. Причем, согласно ГОСТу, допустимо применение как заглавной, так и строчной латинских литер. Часто возникает вопрос о том, почему именно такая буква выбрана. Ведь обычно сокращение производится по первой греческого или английского названия величины. При этом ширина на английском будет выглядеть как "width".

Вероятно, здесь дело в том, что данный параметр наиболее широкое применение изначально имел в геометрии. В этой науке, описывая фигуры, часто длину, ширину, высоту обозначают буквами «а», «b», «с». Согласно этой традиции, при выборе литера «В» (или «b») была заимствована системой СИ (хотя для других двух измерений стали применять отличные от геометрических символы).

Большинство полагает, что это было сделано, дабы не путать ширину (обозначение буквой «B»/«b») с весом. Дело в том, что последний иногда именуется как «W» (сокращение от английского названия weight), хотя допустимо использование и других литер («G» и «Р»). Согласно международным нормам системы СИ, измеряется ширина в метрах или кратных (дольных) их единицах. Стоит отметить, что в геометрии иногда также допустимо использовать «w» для обозначения ширины, однако в физике и остальных точных науках такое обозначение, как правило, не применяется.

Длина

Как уже было указано, в математике длина, высота, ширина - это три пространственных измерения. При этом, если ширина является линейным размером в поперечном направлении, то длина - в продольном. Рассматривая ее как величину физики можно понять, что под этим словом подразумевается численная характеристика протяжности линий.

В английском языке этот термин именуется length. Именно из-за этого данная величина обозначается заглавной или строчной начальной литерой этого слова - «L». Как и ширина, длина измеряется в метрах или их кратных (дольных) единицах.

Высота

Наличие этой величины указывает на то, что приходится иметь дело с более сложным - трехмерным пространством. В отличие от длины и ширины, высота численно характеризует размер объекта в вертикальном направлении.

На английском она пишется как "height". Поэтому, согласно международным нормам, ее обозначают латинской литерой «Н»/«h». Помимо высоты, в чертежах иногда эта буква выступает и как глубины обозначение. Высота, ширина и длина - все все эти параметры измеряются в метрах и их кратных и дольных единицах (километры, сантиметры, миллиметры и т. п.).

Радиус и диаметр

Помимо рассмотренных параметров, при составлении чертежей приходится иметь дело и с иными.

Например, при работе с окружностями возникает необходимость в определении их радиуса. Так именуется отрезок, который соединяет две точки. Первая из них является центром. Вторая находится непосредственно на самой окружности. На латыни это слово выглядит как "radius". Отсюда и строчная или заглавная «R»/«r».

Чертя окружности, помимо радиуса часто приходится сталкиваться с близким к нему явлением - диаметром. Он также является отрезком, соединяющим две точки на окружности. При этом он обязательно проходит через центр.

Численно диаметр равен двум радиусам. По-английски это слово пишется так: "diameter". Отсюда и сокращение - большая или маленькая латинская буква «D»/«d». Часто диаметр на чертежах обозначают при помощи перечеркнутого круга - «Ø».

Хотя это распространенное сокращение, стоит иметь в виду, что ГОСТ предусматривает использование только латинской «D»/«d».

Толщина

Большинство из нас помнят школьные уроки математики. Ещё тогда учителя рассказывали, что, латинской литерой «s» принято обозначать такую величину, как площадь. Однако, согласно общепринятым нормам, на чертежах таким способом записывается совсем другой параметр - толщина.

Почему так? Известно, что в случае с высотой, шириной, длиной, обозначение буквами можно было объяснить их написанием или традицией. Вот только толщина по-английски выглядит как "thickness", а в латинском варианте - "crassities". Также непонятно, почему, в отличие от других величин, толщину можно обозначать только строчной литерой. Обозначение «s» также применяется при описании толщины страниц, стенок, ребер и так далее.

Периметр и площадь

В отличие от всех перечисленных выше величин, слово «периметр» пришло не из латыни или английского, а из греческого языка. Оно образовано от "περιμετρέο" («измерять окружность»). И сегодня этот термин сохранил свое значение (общая длина границ фигуры). Впоследствии слово попало в английский язык ("perimeter") и закрепилось в системе СИ в виде сокращения буквой «Р».

Площадь - это величина, показывающая количественную характеристику геометрической фигуры, обладающей двумя измерениями (длиной и шириной). В отличие от всего перечисленного ранее, она измеряется в квадратных метрах (а также в дольных и кратных их единицах). Что касается буквенного обозначения площади, то в разных сферах оно отличается. Например, в математике это знакомая всем с детства латинская литера «S». Почему так - нет информации.

Некоторые по незнанию думают, что это связано с английским написанием слова "square". Однако в нем математическая площадь - это "area", а "square" - это площадь в архитектурном понимании. Кстати, стоит вспомнить, что "square" - название геометрической фигуры "квадрат". Так что стоит быть внимательным при изучении чертежей на английском языке. Из-за перевода "area" в отдельных дисциплинах в качестве обозначения применяется литера «А». В редких случаях также используется «F», однако в физике данная буква означает величину под названием «сила» ("fortis").

Другие распространенные сокращения

Обозначения высоты, ширины, длины, толщины, радиуса, диаметра являются наиболее употребляемыми при составлении чертежей. Однако есть и другие величины, которые тоже часто присутствуют в них. Например, строчное «t». В физике это означает «температуру», однако согласно ГОСТу Единой системы конструкторской документации, данная литера - это шаг (винтовых пружин, и подобного). При этом она не используется, когда речь идет о зубчатых зацеплениях и резьбе.

Заглавная и строчная буква «A»/«a» (согласно все тем же нормам) в чертежах применяется, чтобы обозначать не площадь, а межцентровое и межосевое расстояние. Помимо различных величин, в чертежах часто приходится обозначать углы разного размера. Для этого принято использовать строчные литеры греческого алфавита. Наиболее применяемые - «α», «β», «γ» и «δ». Однако допустимо использовать и другие.

Какой стандарт определяет буквенное обозначение длины, ширины, высоты, площади и других величин?

Как уже было сказано выше, чтобы не было недопонимания при прочтении чертежа, представителями разных народов приняты общие стандарты буквенного обозначения. Иными словами, если вы сомневаетесь в интерпретации того или иного сокращения, загляните в ГОСТы. Таким образом вы узнаете, как правильно обозначается высота, ширины, длина, диаметр, радиус и так далее.